Abstract

Single nucleotide polymorphisms (SNPs) located in the chromosomal region 16p13.13 have been previously associated with risk for several autoimmune diseases, including type 1 diabetes. To identify and localize specific risk variants for type 1 diabetes in this region and understand the mechanism of their action, we resequenced a 455-kb region in type 1 diabetic patients and unaffected control subjects, identifying 93 novel variants. A panel of 939 SNPs that included 46 of these novel variants was genotyped in 3,070 multiplex families with type 1 diabetes. Forty-eight SNPs, all located in CLEC16A, provided a statistically significant association (P < 5.32 × 10−5) with disease, with rs34306440 being most significantly associated (P = 5.74 × 10−6). The panel of SNPs used for fine mapping was also tested for association with transcript levels for each of the four genes in the region in B lymphoblastoid cell lines. Significant associations were observed only for transcript levels of DEXI, a gene with unknown function. We examined the relationship between the odds ratio for type 1 diabetes and the magnitude of the effect of DEXI transcript levels for each SNP in the region. Among SNPs significantly associated with type 1 diabetes, the common allele conferred an increased risk for disease and corresponded to lower DEXI expression. Our results suggest that the primary mechanism by which genetic variation at CLEC16A contributes to the risk for type 1 diabetes is through reduced expression of DEXI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.