Abstract

Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene.Electronic supplementary materialThe online version of this article (doi:10.1007/s00438-013-0788-y) contains supplementary material, which is available to authorized users.

Highlights

  • Wheat (Triticum aestivum L.) is the second largest crop in dietary intake and the first in harvested area worldwide (FAO 2012), which makes it a critical resource for world food security

  • Since rice does not have a vernalization response and is evolutionarily less related to wheat compared to B. distachyon, we focused on the B. distachyon colinear region to search for potential VRN-D4 candidate genes

  • To evaluate the epistatic interactions among VRN1 and the other known vernalization genes, we developed four different segregating populations

Read more

Summary

Introduction

Wheat (Triticum aestivum L.) is the second largest crop in dietary intake and the first in harvested area worldwide (FAO 2012), which makes it a critical resource for world food security. The wide distribution of wheat and its ability to grow in very different environments is attributed in part to the plasticity of the gene network that regulates its reproductive development (Distelfeld et al 2009a). This plasticity allows wheat to adapt to very different growing conditions and is used by wheat breeders to maximize seed production under different or changing environments. Photoperiod and temperature are the two main environmental cues used by wheat to adjust its flowering time to seasonal changes. Winter wheats, which are sown in the fall, require a prolonged exposure to cold temperatures (known as “vernalization”) to accelerate flowering. The vernalization requirement delays reproductive development, protecting the sensitive reproductive organs from frost damage during the winter

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.