Abstract

The Golgi-derived large secretory granules of Drosophila salivary glands (SGs) constitute the components of the salivary glue secretion (Sgs). The Sgs represents a highly special and unique extracellular composite glue matrix that has not yet been identified outside of Cyclorrhaphous Dipterans. For over half a century, the only major and unambiguously documented function of the larval salivary glands was to produce a large amount of mucinous glue-containing secretory granules that, when released during pupariation, serves to affix the freshly formed puparia to a substrate. Besides initial biochemical characterization of the Sgs proteins and cloning of their corresponding Sgs genes, very little is known about other properties and functions of the Sgs glue. We report here observations on the fine SEM-ultrastructure of the Sgs glue released into to the lumen of SGs, and after it has been expectorated and solidified into the external environment. Surprisingly, in contrast to long held expectations, it appears to be a highly structured bioadhesive mass with an internal spongious to trabecular infrastructure, reflecting the state of its hydratation. We also found that in addition to its cementing properties, it is highly efficient at glueing and trapping microorganisms, and thus may serve a potentially very important immune and defense role. High hydration capacity, the speed by which this glue can dry, uniqueness of its protein composition and spongious infrastructure can provide inspiration for development of potential biomimetics that can attach completely different or incompatible surfaces with high efficiency and strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call