Abstract

The accurate identification of rice varieties using rapid and nondestructive hyperspectral technology is of practical significance for rice cultivation and agricultural production. This paper proposes a convolutional neural network classification model based on a self-attention mechanism (self-attention-1D-CNN) to improve accuracy in distinguishing between crop species in fields using canopy spectral information. After experimental materials were planted in the research area, portable equipment was used to collect the canopy hyperspectral data for rice during the booting stage. Five preprocessing methods and three extraction methods were used to process the data. A comparison of the classification accuracy of different classification models showed that the self-attention-1D-CNN proposed in this study achieved the best classification with an accuracy of 99.93%. The research demonstrated the feasibility of using hyperspectral technology for the fine classification of rice varieties, and the feasibility of using the CNN model as a potential classification method for near-ground crop monitoring and classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.