Abstract

Fine grinding of silicon wafers is a patented technology to manufacture super flat semiconductor wafers cost-effectively. Two papers on fine grinding were previously published in this journal, one discussed its uniqueness and special requirements, and the other presented the results of a designed experimental investigation. As a follow up, this paper presents a study aiming at overcoming one of the technical barriers that have hindered the widespread application of this technology, namely, the difficulty and uncertainty in chuck preparation. Although the chuck shape is critically important in fine grinding, there are no standard procedures for its preparation. Furthermore, the information on the relation between the set-up parameters and the resulting chuck shape is not readily available. In this paper, a mathematical model for the chuck shape is first developed. Then the model is used to predict the relations between the chuck shape and the set-up parameters. Finally, the results of the pilot experiments to verify the model are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.