Abstract
BackgroundAcute kidney injury (AKI) is associated with increased mortality in critically ill patients. Due to differences in the etiology and pathophysiological mechanism, the current AKI criteria put it an embarrassment to evaluate clinical therapy and prognosis. ObjectiveWe aimed to identify subphenotypes based on routinely collected clinical data to expose the unique pathophysiologic patterns. MethodsA retrospective study was conducted based on the Medical Information Mart for Intensive Care IV (MIMIC-IV) and the eICU Collaborative Research Database (eICU-CRD), and a deep clustering approach was conducted to derive subphenotypes. We conducted further analysis to uncover the underlying clinical patterns and interpret the subphenotype derivation. ResultsWe studied 14,189 and 19,382 patients with AKI within 48 h of ICU admission in the two datasets, respectively. Through our approach, we identified seven distinct AKI subphenotypes with mortality heterogeneity in each cohort. These subphenotypes displayed significant variations in demographics, comorbidities, levels of laboratory measurements, and survival patterns. Notably, the subphenotypes could not be effectively characterized using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria alone. Therefore, we uncovered the unique underlying characteristics of each subphenotype through model-based interpretation. To assess the usability of the subphenotypes, we conducted an evaluation, which yielded a micro-Area Under the Receiver Operating Characteristic (AUROC) of 0.81 in the single-center cohort and 0.83 in the multi-center cohort within 48-hour of admission. ConclusionWe derived highly characteristic, interpretable, and usable AKI subphenotypes that exhibited superior prognostic values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.