Abstract
Abstract For the traditional deep learning cannot solve the fog, coastal background interference, and the difficulty of small ships recognition, a multi-scale deep learning training model is proposed in this paper. Based on Faster R-CNN, this paper uses guided filtering to remove fog, as well as combined with negative sample enhancement learning to train the model, thus solving recognition of ship in complex sea conditions. And with multi-scale training strategy, the multi-scale ship samples are produced and sent to the network for training, so as to solve the problem of small target recognition. The experimental results show that compared with the Faster R-CNN, the precision and recall of our method increase by 6.43% and by 4.68% respectively. It solves the difficulty of ships recognition under complex sea conditions and small ship recognition that cannot be solved by traditional deep learning methods, the trained model has good generalization ability and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Network, Monitoring and Controls
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.