Abstract

Distributed transaction systems incur extensive cross-node communication to execute and commit serializable OLTP transactions. As a result, their performance greatly suffers. Caching data at nodes that execute transactions can cut down remote reads. Batching transactions for validation and persistence can amortize the communication cost during committing. However, caching and batching can significantly increase the likelihood of conflicts, causing expensive aborts. In this paper, we develop Hackwrench to address the challenge of caching and batching. Instead of aborting conflicted transactions, Hackwrench tries to repair them using fine-grained re-execution by tracking the dependencies of operations among a batch of transactions. Tracked dependencies allow Hackwrench to selectively invalidate and re-execute only those operations necessary to "fix" the conflict, which is cheaper than aborting and executing an entire batch of transactions. Evaluations using TPC-C and other micro-benchmarks show that Hackwrench can outperform existing commercial and research systems including FoundationDB, Calvin, COCO, and Sundial under comparable settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.