Abstract
Due to the complex and dynamic environment of social media, user generated contents (UGCs) may inadvertently leak users’ personal aspects, such as the personal attributes, relationships and even the health condition, and thus place users at high privacy risks. Limited research efforts, thus far, have been dedicated to the privacy detection from users’ unstructured data (i.e., UGCs). Moreover, existing efforts mainly focus on applying conventional machine learning techniques directly to traditional hand-crafted privacy-oriented features, ignoring the powerful representing capability of the advanced neural networks. In light of this, in this article, we present a fine-grained privacy detection network (GrHA) equipped with graph-regularized hierarchical attentive representation learning. In particular, the proposed GrHA explores the semantic correlations among personal aspects with graph convolutional networks to enhance the regularization for the UGC representation learning, and, hence, fulfil effective fine-grained privacy detection. Extensive experiments on a real-world dataset demonstrate the superiority of the proposed model over state-of-the-art competitors in terms of eight standard metrics. As a byproduct, we have released the codes and involved parameters to facilitate the research community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.