Abstract

The push to drive superconductor strand technology to reach higher critical current density (Jc) values and reduce production costs has led to innovative approaches in manufacturing technology. The Restacked Rod Process (RRP®) by Oxford Instruments is one such process which involves Nb bar extrusions in a Cu sheath. Commercially available Nb used in the initial RRP extrusion leads to nonuniform deformations of the Nb bar which in turn leads to a jagged Cu‐Nb interface. This report presents a feasible methodology to remedy the problem of nonuniform deformation of Nb through severe plastic deformation (SPD) of precursor Nb to obtain smaller grains in starting Nb. Cu‐Nb monocore extrusion and drawing experiments were accomplished at Oxford Instruments using Nb bars of nominal dimensions 45 mm diameter by and 78 mm long and with grain sizes in the range of μm to mm. Results of Cu‐Nb interface roughness measurements show that a finer starting grain size gives a significantly lower roughness and better Nb core conformance to initial shape. Our experiments indicate that refinement of the initial Nb grain size to below ∼50μm could enable fabrication of RRP conductor with improved wire yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.