Abstract
We derive a new steering inequality based on a fine-grained uncertainty relation to capture EPR-steering for bipartite systems. Our steering inequality improves over previously known ones since it can experimentally detect all steerable two-qubit Werner state with only two measurement settings on each side. According to our inequality, pure entangle states are maximally steerable. Moreover, by slightly changing the setting, we can express the amount of violation of our inequality as a function of their violation of the CHSH inequality. Finally, we prove that the amount of violation of our steering inequality is, up to a constant factor, a lower bound on the key rate of a one-sided device independent quantum key distribution protocol secure against individual attacks. To show this result, we first derive a monogamy relation for our steering inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.