Abstract

Recovering the fine-grained working process of couriers is becoming one of the essential problems for improving the express delivery systems because knowing the detailed process of how couriers accomplish their daily work facilitates the analyzing, understanding, and optimizing of the working procedure. Although coarse-grained courier trajectories and waybill delivery time data can be collected, this problem is still challenging due to noisy data with spatio-temporal biases, lacking ground truth of couriers’ fine-grained behaviors, and complex correlations between behaviors. Existing works typically focus on a single dimension of the process such as inferring the delivery time and can only yield results of low spatio-temporal resolution, which cannot address the problem well. To bridge the gap, we propose a digital-twin-based iterative calibration system (DTRec) for fine-grained courier working process recovery. We first propose a spatio-temporal bias correction algorithm, which systematically improves existing methods in correcting waybill addresses and trajectory stay points. Second, to model the complex correlations among behaviors and inherent physical constraints, we propose an agent-based model to build the digital twin of couriers. Third, to further improve recovery performance, we design a digital-twin-based iterative calibration framework, which leverages the inconsistency between the deduction results of the digital twin and the recovery results from real-world data to improve both the agent-based model and the recovery results. Experiments show that DTRec outperforms state-of-the-art baselines by 10.8% in terms of fine-grained accuracy on real-world datasets. The system is deployed in the industrial practices in JD Logistics with promising applications. The code is available at https://github.com/tsinghua-fib-lab/Courier-DTRec .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.