Abstract
Brain disorders are leading causes of disability worldwide. Gene expression studies provide promising opportunities to better understand their etiology but it is critical that expression is studied on a cell-type level. Cell-type specific association studies can be performed with bulk expression data using statistical methods that capitalize on cell-type proportions estimated with the help of a reference panel. To create a fine-grained reference panel for the human prefrontal cortex, we performed an integrated analysis of the seven largest single nucleus RNA-seq studies. Our panel included 17 cell-types that were robustly detected across all studies, subregions of the prefrontal cortex, and sex and age groups. To estimate the cell-type proportions, we used an empirical Bayes estimator that substantially outperformed three estimators recommended previously after a comprehensive evaluation of methods to estimate cell-type proportions from brain transcriptome data. This is important as being able to precisely estimate the cell-type proportions may avoid unreliable results in downstream analyses particularly for the multiple cell-types that had low abundances. Transcriptome-wide association studies performed with permuted bulk expression data showed that it is possible to perform transcriptome-wide association studies for even the rarest cell-types without an increased risk of false positives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.