Abstract

The bulge-chasing kernel in the small-bulge multi-shift QR algorithm for the non-symmetric dense eigenvalue problem becomes a sequential bottleneck when the QR algorithm is run in parallel on a multicore platform with shared memory. The duration of each kernel invocation is short, but the critical path of the QR algorithm contains a long sequence of calls to the bulge-chasing kernel. We study the problem of parallelizing the bulge-chasing kernel itself across a handful of processor cores in order to reduce the execution time of the critical path. We propose and evaluate a sequence of four algorithms with varying degrees of complexity and verify that a pipelined algorithm with a slowly shifting block column distribution of the Hessenberg matrix is superior. The load-balancing problem is non-trivial and computational experiments show that the load-balancing scheme has a large impact on the overall performance. We propose two heuristics for the load-balancing problem and also an effective optimization method based on local search. Numerical experiments show that speed-ups are obtained for problems as small as 40x40 on two different multicore architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.