Abstract

In this brief, we present a fine-grained dark silicon architecture to facilitate further integration of transistors in static random access memory-based reconfigurable devices. In the proposed architecture, we present a technique to power off inactive configuration cells in nonutilized or underutilized logic blocks. We also propose a routing circuitry capable of turning off the configuration cells of connection blocks (CBs) and switch boxes (SBs) in the routing fabric. Experimental results carried out on the Microelectronics Center of North Carolina benchmark show that power consumption in configuration cells of lookup tables, CBs, and SBs can, on average, be reduced by 27%, 75%, and 4%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.