Abstract

This paper presents a novel research on promoting the performance and enriching the functionalities of object recognition. Instead of simply fitting various data to a few predefined semantic object categories, we propose to generate proper results for different object instances based on their actual visual appearances. The results can be fine-grained and layered categorization along with absolute or relative localization. We present a generic model based on structured prediction and an efficient online learning algorithm to solve it. Experiments on a new benchmark dataset demonstrate the effectiveness of our model and its superiority against traditional recognition methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.