Abstract

This paper presents a novel fine-grained task for traffic accident analysis. Accident detection in surveillance or dashcam videos is a common task in the field of traffic accident analysis by using videos. However, common accident detection does not analyze the specific particulars of the accident, only identifies the accident's existence or occurrence time in a video. In this paper, we define the novel fine-grained accident detection task which contains fine-grained accident classification, temporal-spatial occurrence region localization, and accident severity estimation. A transformer-based framework combining the RGB and optical flow information of videos is proposed for fine-grained accident detection. Additionally, we introduce a challenging Fine-grained Accident Detection (FAD) database that covers multiple tasks in surveillance videos which places more emphasis on the overall perspective. Experimental results demonstrate that our model could effectively extract the video features for multiple tasks, indicating that current traffic accident analysis has limitations in dealing with the FAD task and that further research is indeed needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.