Abstract
A fine-grain reconfigurable VLSI for various applications including arithmetic operations is developed. In the fine-grain architecture, it is important to define a cell function which leads to high utilization of a logic block and reduction of a switch block. From the point of view, a universal-literal-based multiple-valued cell suitable for bit-serial reconfigurable computation is proposed. A series-gating differential-pair circuit is effectively employed for implementing a full-adder circuit of Sum and a universal literal circuit. Therefore, a simple logic block can be constructed using the circuit technology. Moreover, interconnection complexity can be reduced by utilizing multiple-valued signaling, where superposition of serial data bits and a start signal which indicates heading of one-word is introduced. Differential-pair circuits are also effectively employed for current-output replication, which leads to high-speed signaling to adjacent cells The evaluation is done based on 90 nm CMOS design rule, and it is made clear that the area of the proposed cell can be reduced to 78% in comparison with that of the CMOS implementatiuon. Moreover, its area-time product becomes 92% while the delay time is increased by 18%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.