Abstract

Compact and dwarfing vining habits in melon (Cucumis melo L.; 2n = 2x = 24) may have commercial importance since they can contribute to the promotion of concentrated fruit set and can be planted in higher plant densities than standard vining types. A study was designed to determine the genetics of dwarfism associated with a diminutive (short internodes) melon mutant line PNU-D1 (C. melo ssp. cantalupensis). PNU-D1 was crossed with inbred wild-type melon line PNU-WT1 (C. melo ssp. agrestis), and resultant F1 progeny were then self-pollinated to produce an F2 population that segregated as dwarf and vining plant types. Primary stem length of F2 progeny assessed under greenhouse conditions indicated that a single recessive gene, designated mdw1, controlled dwarfism in this population. To identify the chromosomal location associated with mdw1, an simple sequence repeat (SSR)-based genetic linkage map was constructed using 94 F2 progeny. Using 76 SSR markers positioned on 15 linkage groups spanning 462.84 cM, the location of mdw1 was localized to Chromosome 7. Using the putative dwarfing-associated genes, fine genetic mapping of the mdw1 genomic region was facilitated with 1,194 F2 progeny that defined the genetic distance between mdw1 and cytokinin oxidase gene, a candidate gene for compact growth habit (cp) in cucumber, to be 1.7 cM. The candidate gene ERECTA (serin/threonine kinase) and UBI (ubiquitin) were also mapped to genomic regions flanking mdw1 at distances of 0.6 and 1.2 cM, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call