Abstract

Highly crystalline pure phase multi-ferroic bismuth ferrite nanoparticles have been integrated into the ordered mesoporous silica material through one pot synthesis protocol. Here, amphiphilic tri-block copolymer Pluronic P123 is being used as structure-directing agent. High temperature heating during calcination and acid treatment eliminates the presence of probable impurity phases. The existence of large uniform ordered mesopores with hexagonal pore architecture are evidenced from the small angle powder XRD, TEM image analysis and N2 adsorption/desorption isotherms. The material has considerably small optical band gap of 2.16 eV. The large specific surface area (396 m2 g(-1)) along with high crystallinity and small optical band gap of mesoporous bismuth ferrite loaded silica nanocomposite (MBFSN-1) materials suggested their potential utility as photocatalyst. Intriguingly, it completely decomposes methyl orange dye under UV-visible light irradiation within only 1 h and together with good reusability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.