Abstract

We demonstrate the fine control of the nanoscale photoluminescence (PL) and optical waveguiding characteristics of light-emitting organic rubrene nanorods (NRs) through focused electron-beam (E-beam) irradiation. Nanoscale laser confocal microscope PL intensity and spectra of the focused E-beam-treated compartments of the rubrene NR drastically varied with E-beam dose, and yellow-white light emission from those compartments with a specific E-beam dose was observed. In optical waveguiding experiments, the propagation characteristics of optical signals along the single NR were dependent on the crystalline structure of the rubrene. For the E-beam treated NR, the waveguiding PL signals along the crystalline a-axis had relatively higher output, indicating the major axis for the optical energy transfer. Additionally, the waveguiding characteristics such as decay constant along the crystalline b-axis and c-axis of the NR considerably varied at the boundary of the E-beam treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.