Abstract
The fine structure constant (electron spin-spin coupling) and the hyperfine structure parameters (electron-nuclear spin coupling, including spin-rotation and electron-nuclear quadrupole coupling) in the low-lying triplet states b3Σ+ u, a3Σ+ g and e3Σ+ u of molecular hydrogen and deuterium are calculated using a recently developed technique with full configuration interaction and multiconfiguration self-consistent field wave functions. The second-order spin-orbit coupling contribution to the 3Σ+ states splitting is negligible, and the calculations therefore provide a good estimate of the zero-field splitting based only on the electron spin-spin coupling values. For the bound a3Σ+ g state a negligible zero-field splitting is found, in qualitative agreement with the e-a spectrum. The zero-field splitting parameter is considerable for the repulsive b3Σ+ u state (≃1 cm−1) and of intermediate size for the bound e3Σ+ u state. The isotropic hyperfine coupling constant is very large not only for the valence b3Σ+ u state (1580 MHz) but also for the Rydberg a and e triplet states (≃1400 MHz). The quadrupole coupling constants for the deuterium isotopes are negligible (0.04–0.07 MHz) for all studied triplet states. The electric dipole activity of the spin sublevels in the triplet-singlet transitions to the ground state is estimated by means of the quadratic response technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.