Abstract

The odd isotopologues of ytterbium monohydroxide, 171,173YbOH, have been identified as promising molecules to measure parity (P) and time reversal (T) violating physics. Here, we characterize the Ã2Π1/2(0,0,0)-X̃2Σ+(0,0,0) band near 577nm for these odd isotopologues. Both laser-induced fluorescence excitation spectra of a supersonic molecular beam sample and absorption spectra of a cryogenic buffer-gas cooled sample were recorded. In addition, a novel spectroscopic technique based on laser-enhanced chemical reactions is demonstrated and used in absorption measurements. This technique is especially powerful for disentangling congested spectra. An effective Hamiltonian model is used to extract the fine and hyperfine parameters for the Ã2Π1/2(0,0,0) and X̃2Σ+(0,0,0) states. A comparison of the determined X̃2Σ+(0,0,0) hyperfine parameters with recently predicted values [Denis et al., J. Chem. Phys. 152, 084303 (2020); K. Gaul and R. Berger, Phys. Rev. A 101, 012508 (2020); and Liu et al., J. Chem. Phys. 154,064110 (2021)] is made. The measured hyperfine parameters provide experimental confirmation of the computational methods used to compute the P,T-violating coupling constants Wd and WM, which correlate P,T-violating physics to P,T-violating energy shifts in the molecule. The dependence of the fine and hyperfine parameters of the Ã2Π1/2(0,0,0) and X̃2Σ+(0,0,0) states for all isotopologues of YbOH are discussed, and a comparison to isoelectronic YbF is made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.