Abstract

Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call