Abstract

The limited availability of analytical reference standards makes non-target screening approaches based on high-resolution mass spectrometry increasingly important for the efficient identification of unknown PFAS (per- and polyfluoroalkyl substances) and their TPs. We developed and optimized a vendor-independent open-source Python-based algorithm (FindPFΔS = FindPolyFluoroDeltas) to search for distinct fragment mass differences in MS/MS raw data (.ms2-files). Optimization with PFAS standards, two pre-characterized paper and soil samples (iterative data-dependent acquisition), revealed Δ(CF2)n, ΔHF, ΔCnH3F2n-3, ΔCnH2F2n-4, ΔCnHF2n-5, ΔCnF2nSO3, ΔCF3, and ΔCF2O as relevant and selective fragment differences depending on applied collision energies. In a PFAS standard mix, 94% (36 of 38 compounds from 10 compound classes) could be found by FindPFΔS. The use of fragment differences was applicable to a wide range of PFAS classes and appears as a promising new approach for PFAS identification. The influence of mass tolerance and intensity threshold on the identification efficiency and on the detection of false positives was systematically evaluated with the use of selected HR-MS2-spectra (20,998) from MassBank. To this end, with the use of FindPFΔS, we could identify different unknown PFAS homologues in the paper extracts. FindPFΔS is freely available as both Python source code on GitHub (https://github.com/JonZwe/FindPFAS) and as an executable windows application (https://doi.org/10.5281/zenodo.6797353) with a graphical user interface on Zenodo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.