Abstract

Simulated ground motions have the potential to advance seismic hazard assessments and structural response analyses, particularly for conditions with limited recorded ground motions such as large magnitude earthquakes at short source-to-site distances. However, rigorous validation of simulated ground motions is needed for hazard analysts, practicing engineers, or regulatory bodies to be confident in their use. A decade ago, validation exercises were mainly limited to comparisons of simulated-to-observed waveforms and median values of spectral accelerations for selected earthquakes. The Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) group was formed to increase coordination between simulation modelers and research engineers with the aim of devising and applying more effective methods for simulation validation. Here, we summarize what has been learned in over a decade of GMSV activities, principally reflecting the views of the SCEC research community but also extending our findings and suggestions for a path forward to broader United States and worldwide simulation validation efforts. We categorize different validation methods according to their approach and the metrics considered. Two general approaches are to compare validation metrics from simulations to those from historical records or to those from semi-empirical models. Validation metrics are categorized into ground motion characteristics and structural responses. We discuss example validation studies that have been impactful in the past decade and suggest future research directions. Key lessons learned are that validation is application-specific, our outreach and dissemination need improvement, and much validation-related research remains unexplored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call