Abstract

A numerical method for computing zeros of analytic complex functions is presented. It relies on Cauchy's residue theorem and the method of Newton's identities, which translates the problem to finding zeros of a polynomial. In order to stabilize the numerical algorithm, formal orthogonal polynomials are employed. At the end the method is adapted to finding eigenvalues of a matrix pencil in a bounded domain in the complex plane. This work is based on a series of papers of Professor Sakurai and collaborators. Our aim is to make their work available by means of a systematic study of properly chosen examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.