Abstract
We present a technique to resolve the rare event problem for a Langevin equation describing a system with thermally activated transitions. A transition event within a given time interval (0,t(f)) can be described by a transition path that has an activation part during (0,t(M)) and a deactivation part during (t(M),t(f))(0<t(M)<t(f)). The activation path is governed by a Langevin equation with negative friction while the deactivation path by the standard Langevin equation with positive friction. Each transition path carries a given statistical weight from which rate constants and related physical quantities can be obtained as averages over all possible paths. We demonstrate how this technique can be used to calculate activation rates of a particle in a two dimensional potential for a wide range of temperatures where standard molecular dynamics techniques are inefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.