Abstract

Regarding the possible multiple functions of a specific gene, finding the alternative roles of genes is a major challenge. Huge amount of available expression data and the central role of the promoter and its regulatory elements provide unique opportunely to address this issue. The question is that how the expression data and promoter analysis can be applied to uncover the different functions of a gene. A computational approach has been presented here by analysis of promoter regulatory elements, coexpressed gene as well as protein domain and prosite analysis. We applied our approach on Thaumatin like protein (TLP) as example. TLP is of group 5 of pathogenesis related proteins which their antifungal role has been proved previously. In contrast, Osmotin like proteins (OLPs) are basic form of TLPs with proved role only in abiotic stresses. We demonstrated the possible outstanding homolouges involving in both biotic and abiotic stresses by analyzing 300 coexpressed genes for each Arabidopsis TLP and OLP in biotic, abiotic, hormone, and light microarray experiments based on mutual ranking. In addition, promoter analysis was employed to detect transcription factor binding sites (TFBs) and their differences between OLPs and TLPs. A specific combination of five TFBs was found in all TLPs presenting the key structure in functional response of TLP to fungal stress. Interestingly, we found the fungal response TFBs in some of salt responsive OLPs, indicating the possible role of OLPs in biotic stresses. Thirteen TFBS were unique for all OLPs and some found in TLPs, proposing the possible role of these TLPs in abiotic stresses. Multivariate analysis showed the possibility of estimating models for distinguishing biotic and abiotic functions of TIPs based on promoter regulatory elements. This is the first report in identifying multiple roles of TLPs and OLPs in biotic and abiotic stresses. This study provides valuable clues for screening and discovering new genes with possible roles in tolerance against both biotic and abiotic stresses. Interestingly, principle component analysis showed that promoter regulatory elements of TLPs and OLPs are more variable than protein properties reinforcing the prominent role of promoter architecture in determining gene function alteration.Electronic supplementary materialThe online version of this article (doi:10.1186/2193-1801-1-30) contains supplementary material, which is available to authorized users.

Highlights

  • Non-coding sequences play a key role in transcriptional regulation, most of the studies have focused on identifying the genes and predicting their function based on coding sequences

  • This study discovers the key elements responsible for dual role of Thaumatin like protein (TLP) in both biotic and abiotic stresses by in silico TLP and Osmotin like protein (OLP) comparative model analysis based on promoter characteristics

  • Theses OLPs can be expressed during salt abiotic stresses and biotic fungal stress making them as super resistance genes

Read more

Summary

Introduction

Non-coding sequences play a key role in transcriptional regulation, most of the studies have focused on identifying the genes and predicting their function based on coding sequences. Gene function is the outcome of upstream non-coding promoter region and downstream coding sequence. Transcription factor binding sites (TFBs or cis-regulatory elements) which identify the specific timing and location of transcriptional activity are placed in the long non-coding sequence upstream of a gene. Diverse cis-regulatory modules are required for a specific expression pattern (Su et al 2010). The identification of regulatory motifs and their organization modules is an important step to improve understanding of gene expression and regulation. Promoter analysis can open a new avenue in the field of genes with unknown function

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.