Abstract

With the proliferation of mobile devices and various sensors ( e.g. , GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users’ privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e. , the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.