Abstract

One of the biggest challenges in studying catalytic reactions is characterizing intermediate states and identifying reaction pathways. Oftentimes, intermediate states with unpaired electrons are formed which provide an opportunity to study the compound via electron paramagnetic resonance (EPR). Combining EPR with density functional theory (DFT) represents a powerful synergistic approach to accomplish these goals. Once the catalytic intermediates and reaction pathway are known, rate-limiting steps critical to parameters like overpotential and turnover number may be identified and eliminated. In this study 1,3,5-triphenyl verdazyl is examined using continuous-wave-EPR, electron nuclear double resonance and DFT as an instructive example of how theory and experiment can complement each other to find the reactive electron. The methods and concomitant analysis have been presented in didactic fashion and with emphasis on the strengths and weaknesses of the methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call