Abstract
We provide an analytical solution to the problem of generating the quickest straight-line trajectory for a three-wheeled omnidirectional mobile robot, under the practical constraint of limited voltage. Applying the maximum principle to the geometric properties of the input constraints, we find that an optimal input vector of motor voltages has at least one extreme value when the orientation of the robot is fixed and two extreme values when rotation is allowed. We can find an explicit representation of the optimal vector for a motion under fixed orientation. We derive several properties of quickest straight-line trajectories and verify them through simulation. We show that the quickest trajectory when rotation is allowed is always faster than the quickest with fixed orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.