Abstract

Essential materials properties can now be assessed through ab initio methods. When coupled with the exponential rise in computational power, this predictive power provides an opportunity for large-scale computational searches for new materials. We can now screen thousands of materials by their computed properties even before the experiments. This computational paradigm allows experimentalists to focus on the most promising candidates, and enable researchers to efficiently and rapidly explores new chemical spaces. In this paper, I present the challenges and opportunities in materials discovery using high-throughput ab initio computing. Focusing on my own research activities in the last five years with examples from the field of transparent conducting oxides, thermoelectrics and electrides, I illustrate how computational screening can be used to accelerate the discovery of new materials as well as to detect new relationships between chemistry, structures, and properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.