Abstract

A CNF formula is harder than another CNF formula with the same number of clauses if it requires a longer resolution proof. In this paper we introduce resolution hardness numbers; they give for m=1,2,... the length of a shortest proof of a hardest formula on m clauses. We compute the first ten resolution hardness numbers, along with the corresponding hardest formulas. To achieve this, we devise a candidate filtering and symmetry breaking search scheme for limiting the number of potential candidates for hardest for- mulas, and an efficient SAT encoding for computing a shortest resolution proof of a given candidate formula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.