Abstract

Ultrametrics model the pairwise distances between living species, where the distance is measured by hereditary time. Reconstructing the tree from the ultrametric distance data is easy, but only if our data is exact. We consider the NP-complete problem of finding the closest ultrametric to noisy data, as modeled by multiplicative or additive total distortion, with or without a monotonicity assumption on the noise.We obtain approximation ratio O(logn) for multiplicative distortion where n is the number of species, and O(1+(ρ−1)−1) for additive distortion where ρ is the minimum ratio of any two distinct input distances. As part of proving our approximation bound for additive distortion, we give the first constant-factor approximation algorithm for a previously-studied problem called Cluster Deletion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.