Abstract
Abstract Classification with imbalanced class distributions is a major problem in machine learning. Researchers have given considerable attention to the applications in many real-world scenarios. Although several works have utilized the area under the receiver operating characteristic (ROC) curve to select potentially optimal classifiers in imbalanced classifications, limited studies have been devoted to finding the classification threshold for testing or unknown datasets. In general, the classification threshold is simply set to 0.5, which is usually unsuitable for an imbalanced classification. In this study, we analyze the drawbacks of using ROC as the sole measure of imbalance in data classification problems. In addition, a novel framework for finding the best classification threshold is proposed. Experiments with SCOP v.1.53 data reveal that, with the default threshold set to 0.5, our proposed framework demonstrated a 20.63% improvement in terms of F-score compared with that of more commonly used methods. The findings suggest that the proposed framework is both effective and efficient. A web server and software tools are available via http://datamining.xmu.edu.cn/prht/ or http://prht.sinaapp.com/ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.