Abstract

Abstract Finding frequent sequential patterns has been defined as finding ordered list of items that occur more times in a database than a user defined threshold. For big and dense databases that contain really long sequences and large itemset such as medical case histories, algorithm proposed on this idea of counting the occurrences output enourmous number of highly redundant frequent sequences, and are therefore simply impractical. Therefore, there is a need for algorithm that perform frequent pattern search and prefiltering simultaneously. In this paper, we propose an algorithm that reinterprets the term support on text mining basis. Experiments show that our method not only eliminates redundancy among the output sequences, but it scales much better with huge input data sizes. We apply our algorithm for mining medical databases: what diagnoses are likely to lead to a certain future health condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.