Abstract

Implicit surface fitting is a promising approach to finding ridges and valleys in discrete surfaces, but existing techniques are time-consuming and rely on user-supplied tuning parameters. We use a modified MLS (moving-least-squares) approximation technique to estimate the local differential information near a vertex by means of an approximating surface. Ridge and valley vertices are easily detected as zero-crossings, and can then be connected along the direction of principal curvature. Our method, demonstrated on several large meshed models, produces a good fit which leads to improved visualization. It does not oscillate and is quick to compute.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.