Abstract
Isogeny-based schemes often come with special requirements on the field of definition of the involved elliptic curves. For instance, the efficiency of SQIsign, a promising candidate in the NIST signature standardisation process, requires a large power of two and a large smooth integer T to divide p 2 − 1 for its prime parameter p . We present two new methods that combine previous techniques for finding suitable primes: sieve-and-boost and XGCD-and-boost. We use these methods to find primes for the NIST submission of SQIsign. Furthermore, we show that our methods are flexible and can be adapted to find suitable parameters for other isogeny-based schemes such as AprèsSQI or POKE. For all three schemes, the parameters we present offer the best performance among all parameters proposed in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.