Abstract

Satellites collecting optical data offer a unique perspective from which to observe the problem of plastic litter in the marine environment, but few studies have successfully demonstrated their use for this purpose. For the first time, we show that patches of floating macroplastics are detectable in optical data acquired by the European Space Agency (ESA) Sentinel-2 satellites and, furthermore, are distinguishable from naturally occurring materials such as seaweed. We present case studies from four countries where suspected macroplastics were detected in Sentinel-2 Earth Observation data. Patches of materials on the ocean surface were highlighted using a novel Floating Debris Index (FDI) developed for the Sentinel-2 Multi-Spectral Instrument (MSI). In all cases, floating aggregations were detectable on sub-pixel scales, and appeared to be composed of a mix of seaweed, sea foam, and macroplastics. Building first steps toward a future monitoring system, we leveraged spectral shape to identify macroplastics, and a Naïve Bayes algorithm to classify mixed materials. Suspected plastics were successfully classified as plastics with an accuracy of 86%.

Highlights

  • Satellites collecting optical data offer a unique perspective from which to observe the problem of plastic litter in the marine environment, but few studies have successfully demonstrated their use for this purpose

  • In contrast with clear water, which is characteristically efficient at absorbing near infrared (NIR) to shortwave infrared (SWIR) light, floating materials including macroalgae and macroplastics reflect in the NIR16,18,20,21,23,24

  • That floating macroplastics can be identified within mixed aggregations in the marine environment using a combination of our Floating Debris Index (FDI) and spectral signature

Read more

Summary

Introduction

Satellites collecting optical data offer a unique perspective from which to observe the problem of plastic litter in the marine environment, but few studies have successfully demonstrated their use for this purpose. We show that patches of floating macroplastics are detectable in optical data acquired by the European Space Agency (ESA) Sentinel-2 satellites and, are distinguishable from naturally occurring materials such as seaweed. In contrast with clear water, which is characteristically efficient at absorbing near infrared (NIR) to shortwave infrared (SWIR) light, floating materials including macroalgae and macroplastics reflect in the NIR16,18,20,21,23,24. Leveraging these spectral properties makes aggregated materials floating on the ocean surface visible from space. In pixels filled with at least 30% of bottles or bags, or 50% of fishing net, the characteristic reflectance and absorption features of floating plastics are observable

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.