Abstract
This research aims to find a suitable transportation rate formula for bed load. Laboratory experiments were conducted in a flume for monitoring and measuring the transportation of sediment particles (bed load) which move by jumping, rolling, or sliding within the flume. This study included two parts. The first part is experimenting using a flume and tracking the particles' movement by analysing the images taken by the camera. The measurements that have been taken are the amount of accumulated bed load particles at the end of the flume, which are distributed along a certain distance during a specific time, thus obtaining measuring data about the amount of accumulated bed load and values of moving distance and the required time for accumulating the particles at the flume end. The accumulated height of bed load is also measured. These experiments were conducted at different low-flow velocities. The second part includes the expression of a formula for bed load transportation rate, which is the product of multiplying the accumulated height of bed load by the velocity of bed load particles with distance at a certain time that was devised in the first part. Through the proposed method of obtaining the measurements in the first part Analysis of bed load particle velocity was done by using (π-theorem) from the results of experiments (Cv, V, ρ, ρS, µ, ds, L). To derive the formula of accumulated bed load height at flume end along a certain distance using Rayleigh’s method and using the results of the experiment (δ, V, g, ds). Finally, there can be found an expression of the bed load transportation rate formula. Checking was made for this formula, which was compared with other researchers' equations using statically measured. It was found that the derived formula was acceptable to calculate the transportation rate of bed load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.