Abstract
We present a method based on a Lagrangian descriptor for revealing the high-dimensional phase space structures that are of interest in nonlinear Hamiltonian systems with index-1 saddle. These phase space structures include a normally hyperbolic invariant manifold and its stable and unstable manifolds, which act as codimension-1 barriers to phase space transport. In this article, finding the invariant manifolds in high-dimensional phase space will constitute identifying coordinates on these invariant manifolds. The method of Lagrangian descriptor is demonstrated by applying to classical two and three degrees of freedom Hamiltonian systems which have implications for myriad applications in chemistry, engineering, and physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.