Abstract
Cell assemblies, defined as groups of neurons exhibiting precise spike coordination, were proposed as a model of network processing in the cortex. Fortunately, in recent years considerable progress has been made in multi-electrode recordings, which enable recording massively parallel spike trains of hundred(s) of neurons simultaneously. However, due to the challenges inherent in multivariate approaches, most studies in favor of cortical cell assemblies still resorted to analyzing pairwise interactions. However, to recover the underlying correlation structures, higher-order correlations need to be identified directly. Inspired by the Accretion method proposed by Gerstein et al. (1978) we propose a new assembly detection method based on frequent item set mining (FIM). In contrast to Accretion, FIM searches effectively and without redundancy for individual spike patterns that exceed a given support threshold. We study different search methods, with which the space of potential cell assemblies may be explored, as well as different test statistics and subset conditions with which candidate assemblies may be assessed and filtered. It turns out that a core challenge of cell assembly detection is the problem of multiple testing, which causes a large number of false discoveries. Unfortunately, criteria that address individual candidate assemblies and try to assess them with statistical tests and/or subset conditions do not help much to tackle this problem. The core idea of our new method is that in order to cope with the multiple testing problem one has to shift the focus of statistical testing from specific assemblies (consisting of a specific set of neurons) to spike patterns of a certain size (i.e., with a certain number of neurons). This significantly reduces the number of necessary tests, thus alleviating the multiple testing problem. We demonstrate that our method is able to reliably suppress false discoveries, while it is still very sensitive in discovering synchronous activity. Since we exploit high-speed computational techniques from FIM for the tests, our method is also computationally efficient.
Highlights
The principles of neural information processing are still under intense debate
In this paper we focus on the last category and solve three major challenges simultaneously: (1) detect and identify members of an active cell assembly directly as significant spike synchrony patterns (2) with an efficient and reliable statistical method that (3) is applicable to massively parallel spike trains, i.e., in the order of hundred(s) of spike trains or more
ASSEMBLY DETECTION WITH frequent item set mining (FIM) Based on the insights gained in the previous section, we propose an assembly detection method based on FIM that reduces the problem of multiple testing considerably
Summary
David Picado-Muiño1*, Christian Borgelt 1, Denise Berger 2, George Gerstein 3 and Sonja Grün. It turns out that a core challenge of cell assembly detection is the problem of multiple testing, which causes a large number of false discoveries. The core idea of our new method is that in order to cope with the multiple testing problem one has to shift the focus of statistical testing from specific assemblies (consisting of a specific set of neurons) to spike patterns of a certain size (i.e., with a certain number of neurons). This significantly reduces the number of necessary tests, alleviating the multiple testing problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.