Abstract

Finding new compounds and their crystal structures is an essential step to new materials discoveries. We demonstrate how this search can be accelerated using a combination of machine learning techniques and high-throughput ab initio computations. Using a probabilistic model built on an experimental crystal structure database, novel compositions that are most likely to form a compound, and their most-probable crystal structures, are identified and tested for stability by ab initio computations. We performed such a large-scale search for new ternary oxides, discovering 209 new compounds with a limited computational budget. A list of these predicted compounds is provided, and we discuss the chemistries in which high discovery rates can be expected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.