Abstract

A graph acts as a powerful modelling tool to represent complex relationships between objects in the big data era. Given two vertices, vertex and edge constraints, the multidimensional constraint reachable ( MCR) paths problem finds the path between the given vertices that match the user-specified constraints. A significant challenge is to store the graph topology and attribute information while constructing a reachability index. We propose an optimized hashing-based heuristic search technique to address this challenge while solving the multidimensional constraint reachability queries. In the proposed technique, we optimize hashing and recommend an efficient clustering technique based on matrix factorization. We further extend the heuristic search technique to improve the accuracy. We experimentally prove that our proposed techniques are scalable and accurate on real and synthetic datasets. Our proposed extended heuristic search technique is able to achieve an average execution time of 0.17 seconds and 2.55 seconds on MCR true queries with vertex and edge constraints for Robots and Twitter datasets respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.