Abstract

Amyotrophic Lateral Sclerosis (ALS) is an uncommon illness, it is caused by moto neuron degeneration, upper, lower and bulbar muscles are affected. Some research also report degeneration in no motor structures of the brain. We proposed to evaluate Electrophysiological and Image techniques like markers in ALS diagnosis and correlate these results. During January 2015 to January 2017, twenty patients with ALS diagnosis and twenty health subjects were evaluated. Sensory and by motor nerve conduction studies, Electromyography, Somato- Sensory Evoked Potentials were done to the patients. 3T MRI image were obtained from the patients and from the health subjects. Post processing MRI techniques like voxel based morphometric, diffusion techniques and corticospinal tract and corpus callosum tractography were applied at different levels of the brain structures. Nerve conduction study was positive in 90% of the patients, SSEP were positive in 60% and EMG abnormalities were observed in 100% of patients. Anatomic MRI was positive in 50% of the patients. Fractional Anisotropy was reduced in ALS group in comparison with health group, more significant at cortex, internal capsule and corpus callosum. Fibers number of cortico-spinal tract and corpus callosum were diminished in ALS group in relation to health group. Also grey and white matter were reduce in ALS group, in areas such as: cingulate gyrus, anterior portion of occipital lobe, left caudate and putamen nucleus, right claustrum nucleus, lower and medium temporal gyrus bilateral, left precentral and post-central gyrus, corpus callosum, corticospinal tract, bilateral internal capsule, bilateral optical radiation, bilateral lower longitudinal fascicle, bilateral hippocampal fimbriae, bilateral radiated corona and pontocerebellar fibers. Electrophysiological studies confirmed ALS diagnosis in 100% of cases. MRI methods show abnormalities in motor and not motor structures of brain in ALS patients. They could be markers in early ALS diagnostic.

Highlights

  • Amyotrophic Lateral Sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disease affecting both upper and lower motor neuron systems

  • FA was diminished along entire corticospinal tract and corpus callosum in ALS patients in comparison with health subjects (Figure 2), but this diminish was not homogeneous, it was more meaningful at cortex (p=0.00), internal capsule (p=0.04) and corpus callosum (Graph 2); p

  • Tractography study revealed that CST volumes of ALS patients is lower than health subjects, Regression analysis between FA at different points of corticospinal tract, fibre counts and ALSFRS-R scale was signified at right and left cortex (p=0.00-0.0), right and left internal capsule (p=0.02-0.00), left brainstem (p=0.00), and corpus callosum (Table 1); p

Read more

Summary

Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disease affecting both upper and lower motor neuron systems. It is characterized by involvement of both motor neurons, median survival time of 2-4 years from onset of symptoms. Cuban National Neurologic and Neurosurgery Institute is ALS reference centre and it reports about 200 new ALS cases by year [2] recently have changed the widely held belief that ALS affects only the motor neuron system, because evidence suggests that ALS is a multisystem neurodegenerative disease that involves sensory and extrapyramidal systems [1,2,3].

Material and Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.