Abstract

Given a probabilistic world model, an important problem is to find the maximum a-posteriori probability (MAP) instantiation of all the random variables given the evidence. Numerous researchers using such models employ some graph representation for the distributions, such as a Bayesian belief network. This representation simplifies the complexity of specifying the distributions from exponential in n, the number of variables in the model, to linear in n, in many interesting cases. We show, however, that finding the MAP is NP-hard in the general case when these representations are used, even if the size of the representation happens to be linear in n. Furthermore, minor modifications to the proof show that the problem remains NP-hard for various restrictions of the topology of the graphs. The same technique can be applied to the results of a related paper (by Cooper), to further restrict belief network topology in the proof that probabilistic inference is NP-hard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.