Abstract
In recent years, the importance of analyzing the effect of genetic variations on the plant phenotypes has raised much attention. In this paper, we describe a procedure which can be useful to discover representative leaf vein patterns for each species or variety under analysis. We consider three legumes, namely red bean, white bean and soybean. Soybean specimens are also divided in three cultivars. In total there are five leaf vein image classes. In order to find the discriminative patterns, we detect Self-Invariant Feature Transform (SIFT) keypoints in the segmented vein images. The Bag of Words model is built using SIFT descriptors, and classification is performed resorting to Support Vector Machines with a Gaussian kernel. Classification accuracies outperform recent results available in the literature and manual classification, showing the advantages of the procedure. The Bag of Words model is useful for vein patterns characterization and provides a means to highlight the most representative patterns for each species and variety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.