Abstract
When ties and incomplete preference lists are permitted in the stable marriage and hospitals/residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size, and position of ties. In this article, we present two new heuristics for finding large stable matchings in variants of these problems in which ties are on one side only. We describe an empirical study involving these heuristics and the best existing approximation algorithm for this problem. Our results indicate that all three of these algorithms perform significantly better than naive tie-breaking algorithms when applied to real-world and randomly-generated data sets and that one of the new heuristics fares slightly better than the other algorithms, in most cases. This study, and these particular problem variants, are motivated by important applications in large-scale centralized matching schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.