Abstract

Finding prevalent patterns in large amount of data has been one of the major problems in the area of data mining. Particularly, the problem of finding frequent itemset or sequential patterns in very large databases has been studied extensively over the years, and a variety of algorithms have been developed for each problem. The key feature in most of these algorithms is that they use a constant support constraint to control the inherently exponential complexity of these two problems. In general, patterns that contain only a few items will tend to be interesting if they have a high support, whereas long patterns can still be interesting even if their support is relatively small. Ideally, we want to find all the frequent patterns whose support decreases as a function of their length without having to find many uninteresting infrequent short patterns. Developing such algorithms is particularly challenging because the downward closure property of the constant support constraint cannot be used to prune short infrequent patterns. In this paper we present two algorithms, LPMiner and SLPMiner. Given a length-decreasing support constraint, LPMiner finds all the frequent itemset patterns from an itemset database, and SLPMiner finds all the frequent sequential patterns from a sequential database. Each of these two algorithms combines a well-studied efficient algorithm for constant-support-based pattern discovery with three effective database pruning methods that dramatically reduce the runtime. Our experimental evaluations show that both LPMiner and SLPMiner, by effectively exploiting the length-decreasing support constraint, are up to two orders of magnitude faster, and their runtime increases gradually as the average length of the input patterns increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.